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1 (1) solve the differentind equation

oy

(\ ‘ 3’ 1 (t | .') civen thit when x =0y = -4
o

. .I
| ) Given that v o ddve” @ e ™ o particalar integral of the differential equation

¢ ' 3 “ F2r et 4 26 ind the constants A and 1)
' o
uy
Hence, solve completely the differentin equation given that < 0, = = Ilwhen x =0
oy
The position vectors of the points A, B Coand D with respect to the ongin O are a, b, ¢, and d
VA2 0k, hoi-dpaShoewid j-ak onded =20 = f 4 Mk,

o

respectively, where i
Pl )
(") the Carteman equation of the plane ADC,

(1) the Cartesian equation of the plane BCD,
(€] o costne of the acute angle between the planes ABC and DCD;

() the aren of the tnangle BCD X
(©) the volume of the tetrahedron ABCD.
3, Prove that the equation of the normal to the rectangular hyperbola xy = ¢’ at the paint

l'(a'l. :,f",)m 'ty c'(l‘ - l)

axis at Q and the tangent t P meets the y - la.~.j
!

The normal at P on the hyperbola meets the x - rulay s p° = el
Show that the locus of the mid-point of QR, as P’ vancs 1% -‘., )

9. (@) Find the root mean square value of tanh xfor DsxsS< .

(b) A curve is given parametrically by x = cosh’ £,y = 2sinh L0 =1 sZ. :

' Find the length of the curve, leaving your answer in term of e. : »
i v ugh 2n radians
. Prove that the area of the surface generated by rotating the curve throug aboyy u.“

.

|

axis is given by “—'.k«" +1) -&"]
5. (a) Prove that the set of numbers 1. 2, 4, 5, 7, 8iforms an Abelian group under multiplicatig,

modulo 9,
(b) Prove also that the set of numbers {1, 2, 4, 5) forms an Abelian group under addition moduls 6,

GA"" the two groups 1somorphic? Give n reason to justify your answer,
+ (a) Test each of the following series for convergence
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(b) Find the first three terms in the Taylor series expansion of 1an x in ascending powers ol’( ')
B
Deduce that If( T )
r - 18 %0 small that (, 3 ;] and higher powers may be neglected, then

~
uﬂl"-:o:;-

7. (8) Given that Z, and Z, ure complex numbers, show geometricall
=1 = [zl 5[z, ==, "’

Hence, or, otherwise, show that if Z s a number such

or, otherwise that

that|z? - 3, o
uul. 3.|=4r « wWhere @ is real, then

|s]s4
(b) Given that 2 =¢™ | show 1} 1 COSS(I‘ in' :
- cosd 6sin 0"2""’0+|.Iurc05030.
3z 4 6i

(€} Show that the transformation @ = >~1 & maps the line |z
g iz~ "4=I:‘2410lhccumln4=3
« (@) Solve for real x, the equation sinh 2x - 2cosh2x 420
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(b) Given that 2=¢" | show that LTI :
g0 " 0N o’u’“"’”ﬂ./mcosom.

() Show that the translormation @ = d2 4 6

8. (a) Solve for real

~

2] "p the line |4 E
X, the equation sinh 2x - 2 ¢ogh A4 2=

:+241omemm|,u|=3

() Express tanh x in terms of ¢! .
amnd ¢ and henee
show that lanh?2
=~

2tanhx
| I+ tanh’ x
(c) Given that /, =Ilanh"xdx.|how that | 4 |
. " ":(nEZ).
Hence, find }unh"(Zx)zlx
v

B ———

9. (a) Prove that if A and By are 1 X n non - singular matrices, l'w’ﬂ(l’”) '« 14
(b) Show that under the transformution, represented by the matrix M, where

I 2 3
W=(2 0 -2,
3 -2 4

the whole space is mapped onto the planex < 2y + 2= 0.
Find the image under this transformation of

(i) theline ¥ =~p= _:.;l .

() the planex = y~z2s(), piving your answer in Cartesan form,




