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''''''' " "Find he complementary ﬁmeuoi{E'f'iﬁé d;ffefeﬁt'ié'i'Equatié}r'—'"'""M"""""'“":"1'“”'"'"""""""
& S ! HERS:
Ei——@_@— ke,
dz?  dz |
in the fof 4 = flw):i ! (3 marks)

Hence find the partlcular lntegral anid the B (4 marks)
2 (a) Express f( ) in partial fractions where |
kXA cm—13. gt e (derks)

LIV f‘(ﬁ;): (

em - + 1)(1‘ + I)( 2)’ ¢ semisie e e
Hem;e ot stherwise , show that e
l;f s)ds ;——[131n2—|—w]

B Ty

N Ia) Solve the eejuatmn

' ‘.tanh'._‘['ff.fz.]-,.z..lnz'_‘- mag s = " el o (4marks}

41 , e RE
(b) S‘how that the set {1 2 4 8} urider X155 rﬁultlphcatlon med 15 forms a grnup._ _ 4 mai*kS)
4. (@) G*iven that the matrlx Mis deﬁned by ' o :

(o2 o SR %

Prove by induction that, |
an 31_), " 2".";
0 ¥

M= forall n>1. . . . (4marks)

(b) A cu.rve is given by the parametric equatmns ;
' r=2, y—t(l-’it?), 0<t<«f—
Show that the ierfgth of the curve is 33 | |
'5 Shtiw that the curve with polar coordinates (r 9)Wh‘er’.e

T_——3'+35in9’gimr+_('1) Q,REZ. | e
is a patabola, P, in the (=, y) plane. ' - o 2 ﬁerS}'
Show that the point (2 — —) lies on P and find the equation of the tangent to Pat ?.‘hls point. '
- ~ -  Wmarky)
6. (a) By the use of the Chnwse Remamder Theorem or otherwise solve the System of congruences
:ﬂ—4(mod7) : ' ey .'
by A compiex numbet z is deﬁm:d by =l (cos 6 + isin 9) such thal

z" == 1 <{cosnfl + isin nb")

Using De Mﬁivre s thet)rem ot mtherwise .,shcs-'w that -

Cop=0

- iy Z—sm 28 is a convergent geometnc pfogressmn . d mark)

il) z—stré? ———4%—{}-—2-61-—-—.
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7. A transformation, f , on a complex plahe is defined by

2'=2z4+3—4i . _
(i ~ Find the image of the point z = 2 — ¢,

(1 mark)
(i) Determinethe invariant point of .f in the form a + i, «, beR . (2 marks)
* (ifi}  Show that f is a similarity transformation (similitude), stating its radius, (2 marks)
(iv) Give the geometrical interpretation of f - (1 mark)
- 8. Given two vectors _
a=oai—j—4k and b=3i+2j+(1+28)k, o,0 €,
ax b =31 —21j + 6k, N
(i) Calculate the values of the real constants « and 3. (3 marks)
(ii) By using the values of o and g, state the vectors a and b | (1 mark)
(iii) Show that a and b are linearly independent. (2 marks)
(iv) Find the Cartesian equation of the plane containing a and b. (2 marks)
9. A function, f , is defined by |
Pt
(1 + -cif.' ) .
(i) Find the domain of f . (1 mark)
(ii) Find the intercept(s) of the curvey = f (). (2 marks)
(iii) Find '
Clim f(z) and lim f{a),
By et V) T
and state the asymptotes of the curve v= (.} . (3 marks).
(iv) Determine f'{x) and . frle). (4 marks)
(v) Prove that there are no turning points. (2 marks)
(vi) Prove, also, that[— In 2,%] is the only point of inflexion. (2 marks)

(vii) Obtain the intervals on which / is concave up and intervals on which f is concave down.

(viii) Obtain a variation table for f . -

(ix) Sketch the curve, y = f(z).
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(2 marks)
(2 marks)
(2 marks)
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10. Two sequences,(u, ) and (v, ), for n € N are defined as follows; ..
uy, =3 vy =4
i - ,and 1 T
Upp1 = E(uﬂ + Un) b U{-e‘-}l‘1=2’1—2—('u”+f"+ 'U-n): Y LA T
V) ~Caleulate g by sid by (S mairks)
(i) ' Another sequence (w, ) is defined by TS e g8 S H S
| w‘r; = Ivn'_‘m @, !‘ivnz“e N, ot
. (ili) Show that (w, )is a convergent geometric sequ_ence.:' i | N | - (2 marks)
(iv) Express w, as a function of »' and obtain its limit. o (4 marks)
- (v) Study the sense of variation (monotony) of (w, } and (2, ). S
" What can you deduce? " ' _ R ' - (4 marks)
(vi) Consider another sequence, ¢, , defined by '
. = e -l ,¥neN-
' 3 _
" (vii) Show that (¢, ) is a constant sequence. 7 (2 marks)
**{viii) Hence, obtain the limits of the sequences (u, ) anci { e, ). ' . (3 marks).
END
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